当前位置: 知识学习 > 小学三年级的数学题

小学三年级的数学题

  • 分类:知识学习
  • 更新时间:2024-12-27
  • 发布时间:2024-05-11 16:10:07
照像是站排类的,左右挨着的人不一样,所以要用到乘法;而像握手这样的问题就要用到加法,因为两个握过一次手之后就不用再握第二次了。还有两种情况要用到加法的是:数线段和数图形,这们的问题要用加法的公式来做。 回答者: 我爱数学1006 | 二级
内容详情

照像是站排类的,左右挨着的人不一样,所以要用到乘法;而像握手这样的问题就要用到加法,因为两个握过一次手之后就不用再握第二次了。还有两种情况要用到加法的是:数线段和数图形,这们的问题要用加法的公式来做。

回答者: 我爱数学1006 | 二级 | 2011-9-22 12:52

其实这已经是高中排列组合的问题了这个没有4+3+2+1

4*3*2*1的原因是四个位子第一个位子可以甲乙丙丁如何一个坐就4个然后第二步第二个位子还剩下三个人任意一个坐3种第三步第三个位子2个位子最后一个位子最后一人坐这种分步计算要乘法计算

回答者: 不晓道 | 二级 | 2011-9-22 12:57

排列组合问题是要用到乘除法的,也有用到加法

回答者: 0898xkj | 二级 | 2011-9-22 13:00

自已想答案

回答者: 115kING | 一级 | 2011-9-22 13:07

其实这已经是高中排列组合的问题了这个没有4+3+2+1

4*3*2*1的原因是四个位子第一个位子可以甲乙丙丁如何一个坐就4个然后第二步第二个位子还剩下三个人任意一个坐3种第三步第三个位子2个位子最后一个位子最后一人坐这种分步计算要乘法计算

排列组合问题是要用到乘除法的,也有用到加法

回答者: 中秋圣土 | 三级 | 2011-9-22 13:07

这已经是高中排列组合的问题了。。。

回答者: 热心网友 | 2011-9-22 15:48

理解万岁。关键是思路要清楚,理解题目和解答。

回答者: 349811411 | 一级 | 2011-9-22 15:54

这怕是高中的题目吧。

排列和组合的问题。

小学三年级这题目,你不要吓人好吧。

回答者: 日夜不休的梦境 | 二级 | 2011-9-22 21:01

这个时候因为先想象有四个位置,甲可以任意挑选一个位置,那么甲有四个位置可以挑选,所以他从中挑一个位置,4个位置,然后,甲已占得一个位置,所以,乙只能挑余下3个位置,以此类推丙2个位置,丁1个位置。。。所以是4*3*2*1 =24种。。。。。

回答者: robertlbj | 一级 | 2011-9-23 21:57

看不懂

回答者: zni**m | 一级 | 2011-9-23 22:21

当规定某人必须站在某人的左边或右边时

回答者: 牛奶_牛仔很忙 | 一级 | 2011-9-24 14:06

或是4*5/2

回答者: 蜗牛c快跑 | 一级 | 2011-9-24 14:30

不要光靠别人的答案,自己的最好

回答者: 1030928014ZA | 一级 | 2011-9-24 18:00

A、B、C、D、E四人照相,每两人站在一起照一张相片。问有几种站法?答案:4+3+2+1=10

回答者: 不败3传说 | 一级 | 2011-9-24 19:03

甲乙丙丁 乙丙丁甲 丙丁甲乙……

回答者: 热心网友 | 2011-9-24 20:51

照像是站排类的,左右挨着的人不一样,所以要用到乘法;而像握手这样的问题就要用到加法,因为两个握过一次手之后就不用再握第二次了。还有两种情况要用到加法的是:数线段和数图形,这们的问题要用加法的公式来做。

其实这已经是高中排列组合的问题了这个没有4+3+2+1

4*3*2*1的原因是四个位子第一个位子可以甲乙丙丁如何一个坐就4个然后第二步第二个位子还剩下三个人任意一个坐3种第三步第三个位子2个位子最后一个位子最后一人坐这种分步计算要乘法计算

回答者: 杨富泽 | 三级 | 2011-9-25 09:08

4*3*2*1是因为第一个位置可以轮流站四个人,接着第二个位置可以轮流站三个人(因为前面已装了一个),第三个位置可以轮流站两个人,最后只剩一个人,所以按4*3*2*1的算法。这类题一般不会有4+3+2+1的算法

回答者: 张19850921 | 一级 | 2011-9-25 10:30

指的是X X X X这样给你选的时候,第一个地方能有4种方法,那第二个地方就是三种,以此类推,得到4*3*2*1。

而4+3+2+1指的是一项选择和其他的另一项搭配会有四种搭配方法,那第二项的搭配除去与第二项的搭配方法以外还有三种,一下次类推,得到4+3+2+1

回答者: 関於「他」 | 二级 | 2011-9-25 10:51

不好意思,不会

回答者: 被恨冰封 | 一级 | 2011-9-25 11:30

比如5个球队互相比赛 没两队要比一次 就要用4+3+2+1了

回答者: wjj1193535017 | 一级 | 2011-9-25 11:44

5个人一起拍呗

回答者: 神奇宝贝神奇 | 二级 | 2011-9-25 13:04

额...小学题好难啊

回答者: 死小孩_valued | 一级 | 2011-9-25 13:47

这个。。。你懂得

回答者: 狠雷狠山寨 | 一级 | 2011-9-25 13:49

回答于:2011-9-25 15:12:36

孩子落后于其他同龄人,孩子无法学好,孩子有不良习惯,孩子心存叛逆。。。。。这些孩子教育方面的问题,我们应该好好想一下为什么了。

如果没有了解孩子真实的内心世界,如果不掌握科学的教育方法和引导方法,孩子的教育自然或多或少存在问题。

现在厌学的学生比例非常大,这大部分与繁杂的作业和家长的教育方法不当有直接关系。孩子被逼的没有了学习兴趣,长期这样下去,就是把孩子埋在书里也不可能真正学到知识。家长应该重视起来,要让孩子不再讨厌学习,要让孩子喜欢学习。

因此,培养孩子的学习和认知世界的兴趣,让孩子获得前所未有的优越感,才能充分发挥孩子本身的巨大潜力。这是每一个家长都希望看到的。

另外,我额外补充一下,如果你有孩子,你看到这个是非常幸运的,针对孩子的教育,我透漏给你一个消息,天才宝贝培养计划倡导者蛮火的,我孩子学校的孩子很多都参加了,现在正在推出免费试读,不好就不要钱,呵呵,我看找个时间也报名。

希望孩子的未来,爸爸妈妈都一辈子引以为傲。

回答者: alqwcxanq | 二级 | 2011-9-25 15:12

像用乘法是,这道题里的人都要参加的时候,而加法是有三四个人,而参加的只有两人是用加,如:甲乙丙三人打球,可以打几场时,就用加。

回答者: 雪尔尼 | 二级 | 2011-9-25 16:11

1 [2] 下一页

数学搭配和分类是同一个问题吗

在介绍排列组合方法之前我们先来了解一下基本的运算公式!C5取3=(5×4×3)/(3×2×1)C6取2=(6×5)/(2×1)通过这2个例子看出CM取N公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子.以取值N的阶层作为分母P53=5×4×3P66=6×5×4×3×2×1通过这2个例子PMN=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m(m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”.解答排列、组合问题的思维模式有二:其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”.分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类法,这n类法彼此之间是相互独立的,无论那一类法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理.在解决排列与组合的应用题时应注意以下几点:1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻”在解决问题时要掌握基本的解题思想和方法:⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.⑵“不邻”问题在解题时最常用的是“插空排列法”.⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置.⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”.3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法.提供10道习题供大家练习1、三边长均为整数,且最大边长为11的三角形的个数为(C)(A)25个(B)26个(C)36个(D)37个------------------------------------------------------解析根据三角形边的原理两边之和大于第三边,两边之差小于第三边可见最大的边是11则两外两边之和不能超过22因为当三边都为11时是两边之和最大的时候因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11,10,9,8,7,6,.1如果为10则另外一个边的长度是10,9,8.2,(不能为1否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合)如果为9则另外一个边的长度是9,8,7,.3(理由同上,可见规律出现)规律出现总数是11+9+7+.1=(1+11)×6÷2=362、(1)将4封信投入3个邮筒,有多少种不同的投法?------------------------------------------------------------解析每封信都有3个选择.信与信之间是分步关系.比如说我先放第1封信,有3种可能性.接着再放第2封,也有3种可能性,直到第4封,所以分步属于乘法原则即3×3×3×3=3^4(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?-------------------------------------------------------------解析跟上述情况类似对于每个旅客我们都有4种选择.彼此之间选择没有关系不够成分类关系.属于分步关系.如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择.知道最后一个旅客也是4种可能.根据分步原则属于乘法关系即4×4×4=4^3(3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法?-------------------------------------------------------------解析分步来做第一步:我们先选出3本书即多少种可能性C8取3=56种第二步:分配给3个同学.P33=6种这里稍微介绍一下为什么是P33,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择.即3×2×1这是分步选择符合乘法原则.最常见的例子就是1,2,3,4四个数字可以组成多少4位数?也是满足这样的分步原则.用P来计算是因为每个步骤之间有约束作用即下一步的选择受到上一步的压缩.所以该题结果是56×6=3363、七个同学排成一横排照相.(1)某甲不站在排头也不能在排尾的不同排法有多少种?(3600)---------------------------------------------解析这个题目我们分2步完成第一步:先给甲排应该排在中间的5个位置中的一个即C5取1=5第二步:剩下的6个人即满足P原则P66=720所以总数是720×5=3600(2)某乙只能在排头或排尾的不同排法有多少种?(1440)-------------------------------------------------解析第一步:确定乙在哪个位置排头排尾选其一C2取1=2第二步:剩下的6个人满足P原则P66=720则总数是720×2=1440(3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?(3120)---------------------------------------------------解析特殊情况先安排特殊第一种情况:甲不在排头排尾并且不在中间的情况去除3个位置剩下4个位置供甲选择C4取1=4,剩下6个位置先安中间位置即除了甲乙2人,其他5人都可以即以5开始,剩下的5个位置满足P原则即5×P55=5×120=600总数是4×600=2400第2种情况:甲不在排头排尾,甲排在中间位置则剩下的6个位置满足P66=720因为是分类讨论.所以最后的结果是两种情况之和即2400+720=3120(4)甲、乙必须相邻的排法有多少种?(1440)-----------------------------------------------解析相邻用捆绑原则2人变一人,7个位置变成6个位置,即分步讨论第1:选位置C6取1=6第2:选出来的2个位置对甲乙在排即P22=2则安排甲乙符合情况的种数是2×6=12剩下的5个人即满足P55的规律=120则最后结果是120×12=1440(5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)-------------------------------------------------------解析这个题目非常好,无论怎么安排甲出现在乙的左边和出现在乙的右边的概率是一样的.所以我们不考虑左右问题则总数是P77=5040,根据左右概率相等的原则则排在左边的情况种数是5040÷2=25204、用数字0,1,2,3,4,5组成没有重复数字的数.(1)能组成多少个四位数?(300)--------------------------------------------------------解析四位数从高位开始到低位高位特殊不能排0.则只有5种可能性接下来3个位置满足P53原则=5×4×3=60即总数是60×5=300(2)能组成多少个自然数?(1631)---------------------------------------------------------解析自然数是从个位数开始所有情况分情况1位数:C6取1=62位数:C5取2×P22+C5取1×P11=253位数:C5取3×P33+C5取2×P22×2=1004位数:C5取4×P44+C5取3×P33×3=3005位数:C5取5×P55+C5取4×P44×4=6006位数:5×P55=5×120=600总数是1631这里解释一下计算方式比如说2位数:C5取2×P22+C5取1×P11=25先从不是0的5个数字中取2个排列即C5取2×P22还有一种情况是从不是0的5个数字中选一个和0搭配成2位数即C5取1×P11因为0不能作为最高位所以最高位只有1种可能(3)能组成多少个六位奇数?(288)---------------------------------------------------解析高位不能为0个位为奇数1,3,5则先考虑低位,再考虑高位即3×4×P44=12×24=288(4)能组成多少个能被25整除的四位数?(21)----------------------------------------------------解析能被25整除的4位数有2种可能后2位是25:3×3=9后2位是50:P42=4×3=12共计9+12=21(5)能组成多少个比201345大的数?(479)------------------------------------------------解析从数字201345这个6位数看是最高位为2的最小6位数所以我们看最高位大于等于2的6位数是多少?4×P55=4×120=480去掉201345这个数即比201345大的有480-1=479(6)求所有组成三位数的总和.(32640)---------------------------------------------解析每个位置都来分析一下百位上的和:M1=100×P52(5+4+3+2+1)十位上的和:M2=4×4×10(5+4+3+2+1)个位上的和:M3=4×4(5+4+3+2+1)总和M=M1+M2+M3=326405、生产某种产品100件,其中有2件是次品,现在抽取5件进行检查.(1)“其中恰有两件次品”的抽法有多少种?(152096)解析也就是说被抽查的5件中有3件合格的,即是从98件合格的取出来的所以即C2取2×C98取3=152096(2)“其中恰有一件次品”的抽法有多少种?(7224560)解析同上述分析,先从2件次品中挑1个次品,再从98件合格的产品中挑4个C2取1×C98取4=7224560(3)“其中没有次品”的抽法有多少种?(67910864)解析则即在98个合格的中抽取5个C98取5=67910864(4)“其中至少有一件次品”的抽法有多少种?(7376656)解析全部排列然后去掉没有次品的排列情况就是至少有1种的C100取5-C98取5=7376656(5)“其中至多有一件次品”的抽法有多少种?(75135424)解析所有的排列情况中去掉有2件次品的情况即是至多一件次品情况的C100取5-C98取3=751354246、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有()(A)140种(B)84种(C)70种(D)35种--------------------------------------------------------解析根据条件我们可以分2种情况第一种情况:2台甲+1台乙即C4取2×C5取1=6×5=30第二种情况:1台甲+2台乙即C4取1×C5取2=4×10=40所以总数是30+40=70种7、在50件产品中有4件是次品,从中任抽5件,至少有3件是次品的抽法有__种.-------------------------------------------------------解析至少有3件则说明是3件或4件3件:C4取3×C46取2=41404件:C4取4×C46取1=46共计是4140+46=41868、有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担.从10人中选派4人承担这三项任务,不同的选法共有(C)(A)1260种(B)2025种(C)2520种(D)5040种---------------------------解析分步完成第一步:先从10人中挑选4人的方法有:C10取4=210第二步:分配给甲乙并的工作是C4取2×C2取1×C1取1=6×2×1=12种情况则根据分步原则乘法关系210×12=25209、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__C(4,12)C(4,8)C(4,4)___种------------------------解析每个路口都按次序考虑第一个路口是C12取4第二个路口是C8取4第三个路口是C4取4则结果是C12取4×C8取4×C4取4可能到了这里有人会说三条不同的路不是需要P33吗其实不是这样的在我们从12人中任意抽取人数的时候,其实将这些分类情况已经包含了对不同路的情况的包含.如果再×P33则是重复考虑了如果这里不考虑路口的不同即都是相同路口则情况又不一样因为我们在分配人数的时候考虑了路口的不同.所以最后要去除这种可能情况所以在上述结果的情况下要÷P3310、在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法?990解析这是排列组合的一种方法叫做2次插空法直接解答较为麻烦,故可先用一个节目去插9个空位,有P(9,1)种方法;再用另一个节目去插10个空位,有P(10,1)种方法;用最后一个节目去插11个空位,有P(11,1)方法,由乘法原理得:所有不同的添加方法为P(9,1)×P(10,1)×P(11,1)=990种.另先在11个位置中排上新添的三个节目有P(11,3)种,再在余下的8个位置补上原有的8个节目,只有一解,所以所有方法有P311×1=990种.

数学中,怎么判断一个问题是“排序问题”还是“组合问题”?

您好,不是同一个问题。

在数学计算中,分类要用加法,而分配要用乘法,在解决问题的时候,一般要先分类仔搭配。

三年级数学搭配问题就是组合问题,它们都是没有顺序要求的,如衣裤搭配,打电话、握手等,无需区分。

看问题是否和顺序有关。有关就是排列,无关就是组合。

排列:比如说排队问题甲乙两人排队,先排甲,抄那么站法是甲乙,先排乙,那么站法乙甲,袭是两种不同的排法,和先排还是后排的顺序有关,所以是A(2,2)=2种

组合:从甲乙两个球中选2个,无论先取甲,在是先取乙,取到的两个球都是甲和乙两个球,和先后取的顺序无关,所zhidao以是C(2,2)=1种

点击查看全部内容