使得方程中等号两边相等的未知数的值叫做方程的解;
也可以说是方程中未知数的值叫做方程的解。
只含有一个未知数的方程的解叫方程的根。
x=2 是方程2x-4=0的解,也是该方程的根。
扩展资料通过给出的图我们可以看出,一共有9个,左边是x个,右边是3个,两者之和就是9,所以可以得到一个式子:x+3=9。我们这里是借助天平来讲解,等号左边相当于天平的左边,等号右边相当于天平的右边,利用等式的型之一:等式两边同时加或者减去相同的数,等号不变。
所以两边同时减去3,得到x+3-3=9-3,因为要求x是多少,所以可以利用天平把左边已知的3个减去就只剩下x了,所以要减去3,而且是同时减去3.最终得到x=6。
这里要明白方程的解和解方程的区别,方程的解是未知数的具体数值,而解方程是求出方程的解这个数值的过程。
还有一个非常重要的点是解方程的最后一步,检验。检验的方法是把求解的答案带回原来的式子检验,也就是方程的左边=x+3=6+3=9=方程的右边,这样就说明我们之前解方程的过程是正确的。例1学习的是利用等式的性质一进行解方程,两边同时加或者减的问题。注意:解方程先写上解、等号要对齐。
解方程必背公式:
1、乘法与因式分解:a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
2、三角不等式:|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
3、一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
4、根与系数的关系:X1+X2=-b/aX1*X2=c/a注:韦达定理,判别式b2-4a=0注:方程有相等的两实根。b2-4ac>0注:方程有一个实根;b2-4ac<0>
相关信息:
一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。