一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?
2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、 乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的'几分之几是多少)
1、画线段图: (1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。
2、找单位“1”:
单位“1” 在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:
(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”
(2)分率前是“的”字:用单位“1”的量×分率=具体量
例如:甲数是20,甲数的1/3是多少?列式是:20×1/3
4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:
(比少):单位“1”的量×(1-分率)=具体量;
例如:甲数是50,乙数比甲数少1/2,乙数是多少?
列式是:50×(1-1/2)
(比多):单位“1”的量×(1+分率)=具体量
例如:小红有30元钱,小明比小红多3/5,小红有多少钱?
列式是:50×(1+3/5)
3、求一个数的几倍是多少:用 一个数×几倍;
4、求一个数的几分之几是多少: 用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)
小学六年级上册数学复习资料 第一单元:位置与方向
用数对表示位置 如:第三列第二行 表示为(3,2)。一般情况下表示为(列,行)
第二单元:分数乘法
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 (如:75×4表示4个75是多少或75的4倍是多少。)
2、一个数乘分数的意义就是求这个数的几分之几是多少。 (如:6×43表示6的43是多少;65×52表示65的52是多少。)
3、分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。(能约分的先约分)
4、一个数乘以真分数,积小于这个数(如:5×21﹤5;
一个数乘以1,积等于这个数(如:54×1﹦54);
一个数乘以大于1的假分数,积大于这个数(如:53×45﹥53)。
5、乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。 第三单元:分数除法
1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。 2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。
3、一个数除以真分数,商大于这个数(如:4÷21﹥4);一个数除以大于1
的假分数,商小于这个数 (如:3÷23﹤3)。
4、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比
的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。根据分数与除法的关系,两
个数的比也可以写成分数形式。(如:3:2也可以写成23,仍读作“3比2”)
5、比和除法、分数的关系:
比 前项 比号
后项 比值
除法 被除数 除号 除数 商
分数 分子 分数线 分母 分数值
6、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
7、“黄金比”(0.618:1)给人以一种优
美的视觉感受。许多建筑作品、艺术作品都是按“黄金比”来设计的。
第四单元:圆
1、圆:圆是由一条曲线围成的封闭的平面图形。
2、圆中心的一点叫圆心(用字母o表示)。
3、连接圆心和圆上任意一点的线段叫做半径(用字母r表示)。
4、通过圆心并且两端都在圆上的线段叫直径(用字母d表示)。
5、一个圆里有无数条半径,长度都相等。一个圆里有无数条直径,长度也都相等。
6、在同圆或等圆中,直径的长度是半
径的2倍。
7、圆是轴对称图形,每条直径所在的直线是圆的对称轴,圆有无数条对称轴。我们以前学过的对称图形中,长方
形有2条对称轴,正方形有4条对称轴,
等腰三角形有1条对称轴,等边三角形
有3条对称轴,等腰梯形有1条对称轴。
8、圆的周长和它的直径的比值叫做圆周率。圆的周长总等于它的直径的π倍,等于它的半径的2π倍。
圆的周长c=πd或 c=2πr 圆的面积s=πr2
9、环形面积=π(R2-r2) 外圆半径=内圆半径+1条环宽
外圆直径=内圆直径+2条环宽 10、跑道宽×2π=跑道间的差距
11、面积相等的长方形、正方形和圆,圆的周长最短,长方形的周长最长;周长相等的长方形、正方形和圆,圆面积最大,长方形面积最小。 第五单元:百分数
1、百分数:表示一个数是另一个数的百分之几的数叫百分数,也叫百分率或百分比。百分数表示的是两个数的倍比关系,因此不带单位名称。 2、一般公式: 小麦的出粉率=
小麦的重量
面粉的重量×100%
品的合格率=产品总数
合格的产品数×100%
职工的出勤率=应出勤人数
实际出勤人数×100%
花生的出油率=花生仁的重量花生油的重量×100%
达标率=学生总人数达标学生人数×100%
100%?发芽种子数发芽率试验种子总数100%?出勤人数出勤率实有人数
100%?成活的棵数成活率种植总棵数
100%?合格的数量合格率生产总数量
投球的命中率=投球总数量投中的数量×100%
100%?售价-进价(成本)
利润率进价(成本) 100%?增长的量增长率原有量?利润售价-进价
出米率=稻谷重量大米的重量×100%
( 注意: 出粉率、出米率、出油率、发芽率、出勤率、成活率、合格率均不大于100%。)
时间×速度=路程 工效×时间=工作总量 单产量×数量=总产量
路程÷速度=时间 工作总量÷工效=时间 总产量÷单产量=数量
路程÷时间=速度 工作总量÷时间=工效 总产量÷数量=单产量
3、、纳税:税收主要分为消费税、增值税、营业税和个人所得税等几类。缴纳
的税款叫应纳税额。
应纳税额与各种收入的比率叫做税率。
4、在银行存款的方式有活期、整存整取、零存整取等。存入银行的钱叫做本
金;取款时银行多支付的钱叫做利息;
利息与本金的比值叫做利率。
利息:本金×利率×时间(国家规定,存款的利息要按5%的税率纳税。)
第六单元:统计
常用的统计图有:条形统计图、折线统
计图、扇形统计图。
常用的统计表有:单式统计表、复式统
计表。
条形统计图:可以清楚看出各部分数量多少。折线统计图:不但可以清楚看出
各部分数量多少,而且可以看出各部分数量的增减变化情况。扇形统计图:更清楚地了解各部分数量同总数之间的
关系。
分数百分数应用题
分数、百分数应用题的一般解题方法 一、解决分数乘法问题
1、求一个数的几分之几是多少?(单
位“1”已知)单位“1”×分率=分率所对应的量
2、求一个数比单位“1”多几分之几是多少?(单位“1”已知)单位“1”×(1+分率)=分率所对应的量 3、求一个数比单位“1”少几分之几是多少?(单位“1”已知)单位“1”×(1-分率)=分率所对应的量 二、解决分数除法问题
1、已知一个数的几分之几是多少,求这个数?(单位“1”未知)数量÷数量所对应的分率=单位“1”
2、已知一个数比另一个数多几分之分,求这个数?(单位“1”未知)数量÷(1+分率)=单位“1”
3、已知一个数比另一个数少几分之分,求这个数?(单位“1”未知)数量÷(1-分率)=单位“1” 三、解决百分数问题
1、求百分率的问题:一个数是另一个数的百分之几。
另一个数一个数×100%=百分率
2、求一个数比另一个数多(少)百分之几。
相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-1 或 1—对应量÷单位“1”
3、求一个数的百分之几是多少 (单位“1”已知)单位“1”×百分率=分率所对应的量
已知一个数的百分之几是多少,求这个数。 (单位“1”未知)数量÷数量所对应的百分率=单位“1” 4、求比一个数多(少)百分之几的数是多少
单位“1”×(1+百分率)=分率所对应的数量
5、已知比一个数多(少)百分之几的数是多少,求这个数。
数量÷(1+对应分率)=单位“1” 6、折扣问题 原价×折扣=现价 7、纳税问题 收入×税率=应纳税额 8、利息问题 本金×利率×时间=利息 利息×税率=利息税
利息—利息税=税后利息 本息=本金+税后利息
分数乘法这样算:
分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。 做第一步时,就要想一个数的分子和另一个分母能不能约分。
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(二)、规律:(乘法中比较大小时)
一个数(O除外)乘大于1的数,积大于这个数。
一个数(O除外)乘小于1的数(O除外),积小于这个数。一个数(O除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: ab=ba
乘法结合律: (ab)c=a(bc)
乘法分配律: (a+b)c=ac+bcac+bc=(a+b)
分数乘法:
1、分数乘整数,分母不变,分子乘整数,最后能约分的要约分。
例:
2、分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。
例:
3、分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。
例:
4、分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后能约分的要约分。
例:
5、分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分。
例:
分数计算方法:
分数乘整数的意义与整数乘法的意义相同,都是(求几个相同加数和的简便运算)。
分数乘整数的意义与整数乘法的意义相同,一个数与分数相乘,可以看作是求这个数的几分之几是多少。
分数乘法是一种数学运算方法,分数的分子与分子相乘,分母与分母相乘,能约分的要先约分,分子能不能和分母乘,做第一步时,就要想一个数的分子和另一个数的分母能不能约分(0除外)。
备课时间 :8月25日
授课时间 :月日 第1周第1节
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点 :使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点 :引导学生总结分数乘整数的计算法则。
教学过程:
(一)铺垫
1.出示复习题。(投影片)
(1)整数乘法的意义是什么?
(2)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(3)计算:1/6+2/6+3/6 3/10+3/10+3/10
计算3/10+3/10+3/10时向学生提问:这道题有什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2.引出课题。
分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)
(二)探究新知。
1.教学分数乘整数的意义。 出示例1,指名读题。
(1)分析演示:师:每人吃2/9块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了2/9块,三个人吃了几个2/9块?使学生从图中看到三个人吃了3个2/9块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:
2/9+2/9+2/9=2+2+2/9=6/9=2/3(块),(教师将3个双层扇形拼成一个一块蛋糕的2/3)
(2)观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:
2/9×3。再启发学生说出2/9×3表示求3个2/9相加的和。
(3)比较2/9×3和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。 通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点:2/9×3是分数乘整数,12×5是整数乘整数。
(4)概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2.教学分数乘以整数的计算法则。
(1)推导算理:
由分数乘整数的意义导入。
问:2/9×3表示什么意义?引导学生说出表示求3个2/9的和。学生计算,提示:分子中3个2连加简便写法怎么写?学生答后板书:2×3/9=6/9=2/3(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:2×3/9的分子部分、分母与算式2/9×3两个数有什么关系?(互相讨论)
观察结果:2×3/9的分子部分2×3就是算式中2/9的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结2/9×3的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出2/9×3是用分数2/9的分子2与整数3相乘的积作分子,分母不变。 根据
2/9×3的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分后约得的数要与原数上下对齐。然后让学生将2/9×3按简便方法计算。
3.反馈练习:
1)教材第2页“做一做”第1题。
订正时让学生说出乘法中被乘数、乘数各表示什么?
2)教材第2页“做一做”第2题。
教师提示:乘的时候如果分子分母能约分的要先约分。
3)教材第6页“练习一”第1、2、3题。
学生独立完成,集体交流,重点让学生说一说思路。
(三)全课小结。
这节课我们学习了分数乘整数的知识,相乘时,用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算,结果相同。
板书
分数乘整数
2/9×3=2×3/9=6/9=2/3
分数乘整数,用分子乘整数的积作分子,分母不变。
教学反思:
数学六年级上册(第一单元)
分数乘分数
备课时间:8月26日 授课时间:月日 第1周第2节
教学目标:
1、 理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数乘分数的简便计算。
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点 : 理解一个数乘分数的意义,掌握其计算法则。
教学难点: 理解一个数乘分数的意义。
教学过程
一、创设情境,引入新课。
1、创设情境:李伯伯家有一块1/2 公顷的地。种土豆的面积占这块地的1/5 ,种玉米的面积占3/5
根据题目所给信息,你能提出什么问题?
预设:种土豆的面积是多少公顷? 种玉米的面积是多少公顷?
(1)理解题意:这块地共有1/2 公顷,种土豆的面积占这块地的1/5 ,应把这块地的面积看
作单位“1”。求种土豆的面积就是求1/2 公顷的1/5 是多少?用乘法计算,列式为1/2 ×1/5
2、揭示课题:请你观察1/2 ×1/5 这个算式,它有什么特点?
二、探索交流,解决问题。
(一)、操作探究算理。
1、提问:1/2 ×1/5究竟等于多少呢?
2、提出操作要求:这张纸代表面积是1公顷菜地。请你们小组合作用量一量、分一分、涂一涂的方法,说明1/2 ×1/5 =1/10。
3、学生动手操作,教师巡视。
4、小组汇报研究成果。
先把整张纸对折,纸就被平均分成两份,每一份是这张纸的1/2 ,再把这1/2 部分平均分成5份,涂出其中的1份,这1份就占整张纸的1/10 。说明1/2 ×1/5 =1/10 。
5、结合演示进行归纳。
用演示涂色过程:我们先把这张纸平均分成2份,1份是这张纸的1/2 ,又把这1/2 平均分成5份,也就是把这张纸平均分成了2×5=10份,1份是这张纸的1/10 。由此可以得到:1/2 ×1/5 =1×1/5×2=1/10(板书算式)
(二)、迁移延伸,归纳法则。
1、理解题意:与解决问题
(1)的方法相同,种玉米的面积占这块地(1/2 公顷)的3/5 ,也是把这块地的.面积看作单位“1”。求种玉米的面积就是求1/2 公顷的3/5是多少,用乘法计算。
2、小组讨论并操作:怎样列式?涂色表示1/2 的3/5 。怎样计算?
3、交流计算方法和思路。
预设:与刚才一样,也是把这张纸分成2×5=10份,不同的是取其中的3份,可以得到:1/2×3/5=1×3/2 ×5=3/10
(板书算式)
4、提问:观察黑板上的这两个算式,你能说一说分数乘分数的计算方法吗?
5、通过学生讨论交流得到:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
三、巩固应用,内化提高。
1、教材第4页“做一做”的第1、2题。
2、4/9的1/3是( ),3/4的1/5是( )。
3、一块地是4/5公顷,这块地的1/7是( )公顷。
4、一堆水泥重15/16吨,用去3/7,用去( )吨,还乘下总数的( )。
5、1千克面条3/2元,王大妈买了7/10千克面条,共花了( )元。
6、一个长方形的宽是5/18米,长是宽的4倍,这个长方形的面积是( )平方米。
四、回顾整理,反思提升
分数乘分数,用分子相乘的积作分子。用分母相乘的积作分母。
板书 :
分数乘分数
1/2×1/5=1×1/2×5=1/10
1/2×3/5=1×3/2×5=3/10
分数乘分数,用分子相乘的积作分子。用分母相乘的积作分母。
教学反思:
数学六年级上册(第一单元)
练习课
备课时间: 8月26日 授课时间:月日 第1周第3节
教学目标:
1、巩固学生对计算方法的掌握,提高计算能力。
2、进一步把握分数乘法的意义。
3、养成学生良好的审题,计算习惯。
教学重点 :提高计算能力。
教学难点 :把握分数乘法的意义。
教学过程
一、导入
1、口算
1/4×1/3 1/5×1/2 2/3×3/4 2/5×1/2
14×3/7 15×4/5 5/8×2/5 7/15×5
2、4/11×5表示( )。
10×3/5表示( )。
二、巩固练习。
1、计算
7/33×3/14 5/7×4 27×5/9
5/8×4/15 7/12×3/7 14×6/7
学生独立完成,集体订正,汇报时先要求学生说清算式意义,再说计算过程。
2、列式计算
9/10吨的2/3是多少吨?
5/8米的1/2是多少米?
9千克的一半是多少千克?
学生独立完成,同桌互说解题思路后,集体汇报,强调理解“一半”。
3、1千克牛奶含乳糖1/21千克,蛋白质的含量是乳糖的7/10,1千克牛奶含蛋白质多少千克?
学生小组合作完成练习题。
三、总结
通过今天的练习,希望同学们可以更熟练掌握计算。
板书
练习课
求“一半” 乘1/2
教学反思:
数学六年级上册(第一单元)
分数乘分数
备课时间 :8月26日 授课时间:月日 第1周第4节
教学目标:
1、掌握分数乘法计算过程中的约分方法,能正确熟练进行分数乘法计算,提高学生的计算能力。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点: 掌握分数乘法计算过程中的约分方法。
教学难点 :熟练掌握分数的约分方法,提高学生的计算能力。
教学过程 :
一、复习导入
3/5×30 12×2/3 2/5×1/3 7/8×3/4
交流时让学生说一说: ⑴分数乘整数的约分方法。 ⑵分数乘分数的计算方法。
2.导入新课。
今天这节课,我们继续学习分数乘法的相关知识。
二、探索新知
⒈出示例题。
无脊椎动物中游泳最快的是乌贼,它的速度是9/10千米/分。
⒉解决问题一:李叔叔的游泳速度是乌贼的4/45。李叔叔每分钟游多少千米?
⑴阅读理解。
组织学生阅读题目,理解题意,得出:
①乌贼的速度是9/10千米/分。 李叔叔的游泳速度是9/10千米/分的4/45。
⑵列式解答。
让学生根据已经掌握的计算方法独立解答,交流解答过程。教师根据学生回答板书:
9/10×4/45=9×4/10×45=36/450=2/25()
⑶启迪思考。
在分数乘整数时,我们在计算过程中先约分,可以使计算简便。在这里,我们是否也可以进行先约分呢?该怎样进行约分呢?
学生独立思考,尝试计算。
⑷交流讨论。
通过交流得出:分数乘分数,为了计算简便,可以先约分再乘。约分时,分子的两个因数和分母的两个因数进行约分。
⒊解决问题二:乌贼30分钟可以游多少千米?
⑴学生独立解答,约分:
⑵教师指导,分数乘法也可以直接约分。
⒋试一试。
9/10×4/45还可以怎样进行约分呢? 板书:(计算过程)
强调:分数和分数相乘,可以采用分子和分母交叉约分。
⒌小结。
三、巩固练习。
⒈教材第5页“做一做”第1题。
先让学生独立练习,再组织学生交流汇报,汇报时重点交流约分的方法。
⒉教材第5页“做一做”第2题。
先让学生阅读题目,理解题意,根据“速度×时间=路程”的数量关系列出算式,再让学生独立计算,最后组织交流。
⒊教材第5页“做一做”第3题。
学生独立解答,组织交流订正。
⒋教材第6页“练习一”第6题。 学生独立解答,组织交流订正。
四、课堂小结。
分数和分数相乘,可以采用分子和分母交叉约分。
板书
分数乘分数
9/10×4/45=9×4/10×45=2/25(千米)
9/10×30=9×30/10=27(千米)
教学反思:
数学六年级上册(第一单元)
分数乘法练习课
备课时间: 8月27日 授课时间:月日 第1周第5节
教学目标:
1、通过练习,进一步理解一个数乘分数的意义。
2、通过练习,进一步巩固分数乘法的计算方法,提高学生的计算能力。
3、在学习的过程中培养学生的合作意识及认真、仔细的良好学习 习惯。
教学重点: 熟练掌握分数乘法的计算方法。
教学难点: 培养学生解决实际问题的能力。
教学过程
一、复习导入
⒈复习旧知。
⑴一个数乘分数的意义是什么?
⑵分数乘法的计算方法是什么?
⒉导入新课。
今天这节课,我们就一起来做一些和分数乘法有关的练习吧!(板书课题)
二、探索新知。
⒈教材第7页“练习一”第7题。
这道题是进行分数乘法的计算练习,可以先让学生独立计算,再进行交流。(提醒学生注意观察是否可以进行约分,能约分的可以先约分再乘。)
⒉出示教材第7页“练习一”第8题到第13题。
这六题都是日常生活中常见的分数乘法问题,题目中设计到很多课外知识,这些练习不仅可以加深学生对一位数乘分数意义的理解,巩固分数乘法的计算方法,而且可以拓展学生的知识面,开阔学生的视野,增长知识。
练习时,可以先让学生独立阅读并理解题意,然后再独立解答,最后组织交流汇报。
三、全课总结。
计算时,要掌握好计算方法,准确计算。
板书
分数乘法练习课
40×11/20=22(种)
1、最小的一位数是1,最小的自然数是0。
2、小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3、小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位。
4、小数的分类:小数 有限小数。
第二单元分数乘法:
1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。
2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。
扩展资料:
小学六年级数学学习方法
1、抓住课堂
平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。
2、高质量完成作业
不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。
3、勤思考,多提问
对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。