我就是数学专业的。首先高等数学也有基础学科,数学分析,高等代数和空间解析几何。对于你的问题,如果你没有高中知识,那这三门课程基本就看不下去,这个时候你肯定要去看初等数学,由于你没有基础,需要查阅的东西很多,看书会没有连贯性,不利于思维培养。而且高等数学里面有些对于初等数学的东西不会解释,你没有基础根本就无法看懂这些简单跳步,所以打牢基础是关键,否则你一本书很难看下去,更别提锻炼思维了。
高等数学是高等学校中经济类、理工类专业学生必修的重要基础理论课程。
数学主要是研究现实世界中的数量关系与空间形式。在现实世界中,一切事物都在不断地变化
着,并遵循量变到质变的规律。凡是研究量的大小、量的变化、量与量之间的关系以及这些关系的变化,就少不了数学。同样,一切实在的物皆有形,客观世界中存在着各种不同的空间形式。因此,宇宙之大,粒子之微,光速之快,世界之繁, …. ,无处不用到数学。
数学不但研究现实世界中的数量关系与空间形式,还研究各种各样的抽象的 “ 数 ” 和 “ 形 ” 的模式结构。
恩格斯说 : “ 要辨证而又唯物地了解自然,就必须掌握数学。 ” 英国著名哲学家培根说: “ 数学是打开科学大门的钥匙。 ” 著名数学家霍格说: “ 如果一个学生要成为完全合格的、多方面武装的科学家,他在其发展初期就必定来到一座大门并且通过这座门。在这座大门上用每一种人类语言刻着同样一句话 :‘ 这里使用数学语言 ' 。随着科学技术的发展,人们越来越深刻地认识到:没有数学,就难于创造出当代的科学成就。科学技术发展越快越高,对数学的需求就越多。
如今,伴随着计算机技术的迅速发展、自然科学各学科数学化的趋势、社会科学各部门定量化的要求,使许多学科都在直接或间接地,或先或后地经历了一场数学化的进程(在基础科学和工程建设研究方面,在管理机能和军事指挥方面,在经济计划方面,甚至在人类思维方面,我们都可以看到强大的数学化进程)。联合国教科文组织在一份调查报告中强调指出: “ 目前科学研究工作的特点之一是各门学科的数学化。 ”
为了使大家了解 “ 高等数学 ” 在数学中的地位,我们简要地介绍一点数学的历史。
从最一般的观点来看,数学的历史可以分为四个基本的、在性质上不同的阶段。当然精确的划分这些阶段是不可能的,因为每一个相继的阶段的本质特征都是逐步形成的,而且在每一个 “ 前期 ” 内,都孕育乃至萌发了 “ 后期 ” 的内容;而每一个 “ 后期 ” 又都是其 “ 前期 ” 内容的持续发展阶段。不过这些阶段的区别和它们之间的过渡都能明显地表示出来。
第一阶段:数学萌芽时期
这个时期从远古时代起,止于公元前 5 世纪。这个时期,人类在长期的生产实践中积累了许多数学知识,逐渐形成了数的概念,产生了数的运算方法。由于田亩度量和天文观测的需要,引起了几何学的初步发展。这个时期是算术、几何形成的时期,但它们还没有分开,彼此紧密地交织在一起。也没有形成严格、完整的体系,更重要的是缺乏逻辑性,基本上看不到命题的证明、演绎推理和公理化系统。
第二阶段:常量数学时期
即 “ 初等数学 ” 时期。这个时期开始于公元前 6 、 7 世纪,止于 17 世纪中叶,延续了 2000 多年。在这个时期,数学已由具体的阶段过渡到抽象的阶段,并逐渐形成一门独立的、演绎的科学。在这个时期里,算术、初等几何、初等代数、三角学等都已成为独立的分支。 这个时期的基本成果,已构成现在中学数学课本的主要内容。
第三阶段:变量数学时期
即 “ 高等数学 ” 时期。这个时期以 17 世纪中叶笛卡儿的解析几何的诞生为起点,止于 19 世纪中叶。这个时期和前一时期的区别在于,前一时期是用 静止 的方法研究客观世界的 个别 要素,而这一时期是运用 运动 和 变化 的观点来探究事物变化和发展的规律。
在这个时期,变量与函数的概念进入了数学,随后产生了 微积分 。这个时期虽然也出现了概率论和射影几何等新的数学分支,但似乎都被微积分过分强烈的光辉掩盖了它们的光彩。这个时期的基本成果是解析几何、微积分、微分方程等,它们是现今高等院校中的基础课程。
第四阶段:现代数学阶段
这个时期始于 19 世纪中叶。这个时期是以代数、几何、数学分析中的深刻变化为特征。几何、代数、数学分析变得更为抽象。可以说在现代的数学中, “ 数 ” 、 “ 形 ” 的概念已发展到很高的境地。比如,非数之 “ 数 ” 的众多代数结构,像群、环、域等;无形之 “ 形 ” 的一些抽象空间,像线性空间、拓扑空间、流形等。
在人类智能活动的研究领域里也有数学的身影。产生于 19 世纪末,现在已经得到广泛发展的新学科 —— 数理逻辑,用数学的方法研究命题的结构、研究推理的过程。
随着科学技术的发展,使各数学基础学科之间、数学和物理、经济等其它学科之间相互交叉和渗透,形成了许多边缘学科和综合性学科。**论、计算数学、电子计算机等的出现和发展,构成了现在丰富多彩、渗透到各个科学技术部门的现代数学。
“ 初等 ” 数学与 “ 高等 ” 数学之分完全是按照惯例形成的。可以指出习惯上称为 “ 初等数学 ” 的这门中学课程所固有的两个特征。
第一个特征在于其所研究的对象是不变的量(常量)或孤立不变的规则几何图形;第二个特征表现在其研究方法上。初等代数与初等几何是各自依照互不相关的独立路径构筑起来的,使我们既不能把几何问题用代数术语陈述出来,也不能通过计算用代数方法来解决几何问题。
16 世纪,由于工业革命的直接推动,对于运动的研究成了当时自然科学的中心问题,这些问题和以往的数学问题有着原则性的区别。要解决它们 ,初等数学以不够用了,需要创立全新的概念与方法,创立出研究现象中各个量之间的变化的新数学。变量与函数的新概念应时而生,导致了初等数学阶段向高等数学阶段的过渡。
高等数学与初等数学相反,它是在代数法与几何法密切结合的基础上发展起来的。这种结合首先出现在法国著名数学家、哲学家笛卡儿所创建的解析几何中。笛卡儿把变量引进数学,创建了坐标的概念。有了坐标的概念,我们一方面能用代数式子的运算顺利地证明几何定理,另一方面由于几何观念的明显性,使我们又能建立新的解析定理,提出新的论点。笛卡儿的解析几何使数学史上一项划时代的变革,恩格斯曾给予高度评价: “ 数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就成为必要的了 …. 。 ”
有人作了一个粗浅的比喻:如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干就是 “ 高等分析、高等代数、高等几何 ” ( —— 它们被统称为高等数学)。这个粗浅的比喻,形象地说明这 “ 三高 ” 在数学中的地位和作用,而微积分学在 “ 三高 ” 中又有更特殊的地位。学习微积分学当然应该有初等数学的基础,而学习任何一门近代数学或者工程技术都必须先学微积分。
英国科学家牛顿和德国科学家莱布尼茨在总结前人工作的基础上各自独立地创立了微积分,与其说是数学史上,不如说是科学史上的一件大事。恩格斯指出: “ 在一切理论成就中,未必再有什么像 17 世纪下半叶微积分学的发明那样被看作人类精神的最高胜利了。 ” 他还说; “ 只有微积分学才能使自然科学有可能用数学来不仅仅表明状态,并且也表明过程、运动。 ” 时至今日,在大学的所有经济类、理工类专业中,微积分总是被列为一门重要的基础理论课。
高等数学的主要学习内容和教学目的
我们要学习的《高等数学》这门课程包括极限论、微积分学、无穷级数论和微分方程初步,最主要的部分是微积分学。
微积分学研究的对象是函数,而极限则是微积分学的基础(也是整个分析学的基础)。 通过学习的《高等数学》这门课程要使学生获得:
( 1 )函数、极限、连续 ;
( 2 )一元函数微积分学;
( 3 )多元函数微积分学;
( 4 )无穷级数(包括傅立叶级数);
( 5 )常微分方程。
等方面的基本概念、基本理论和基本运算技能,为学习后继课程奠定必要的数学基础。 通过各个教学环节培养学生的抽象概括能力、逻辑推理能力和自学能力,还要特别注意培养学生比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力。
怎样才能学好高等数学
1 、要学好高等数学,首先了解高等数学的特点
高等数学有三个显著的特点:高度的抽象性;严谨的逻辑性;广泛的应用性。
( 1 )高度的抽象性
数学的抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却不是每次都把它们同具体的对象联系起来。在数学的抽象中只留下量的关系和空间形式,而舍弃了其他一切。它的抽象程度大大超过了自然科学中一般的抽象。
( 2 )严谨的逻辑性
数学中的每一个定理,不论验证了多少实例,只有当它从逻辑上被严格地证明了的时候,才能在数学中成立。在数学中要证明一个定理,必须是从条件和已有的数学公式出发,用严谨的逻辑推理方法导出结论。
( 3 )广泛的应用性
高等数学具有广泛的应用性。例如,掌握了导数概念及其运算法则,就可以用它来刻画和计算曲线的切线斜率、曲线的曲率等等几何量;就可以用它来刻画和计算速度、加速度、密度等等物理量;就可以用它来刻画和计算产品产量的增长率、成本的下降率等等经济量; …… 。掌握了定积分概念及其运算法则,就可以用它来刻画和计算曲线的弧长、不规则图形的面积、不规则立体的体积等等几何量;就可以用它来刻画和计算变速运动的物体的行程、变力所做的功、物体的重心等等物理量;就可以用它来刻画和计算总产量、总成本等等经济量; …… 。
高等数学既为其它学科提供了便利的计算工具和数学方法,也是学习近代数学所必备的数学基础。
2 、高等数学的教学特点
对于大学课程,特别是作为基础理论课的高等数学,课堂教学是重要环节。高等数学的课堂教学与中学数学的课堂教学相比,有下述三个显著的差别。
( 1 )课堂大
高等数学课堂是一、二百人的大课堂,在这种大课堂上不可能经常让同学们提问题。同学们在学习的基础上、水平上、理解接受能力上肯定存在差异,但是教师的基点只能是照顾大多数,不可能给跟不上、听不全懂的少数同学细讲、重复讲。
( 2 )时间长
每次两节,共 100 分钟。
( 3 )进度快
高等数学的内容极为丰富,而学时又相对很少(同中学数学课相比),平均每次课要讲授教材内容一至两节(甚至更多)。另外,大学与中学的教学要求有很大的不同,教师讲课主要讲重点、难点、疑点,讲分析问题的方法,讲解题的思路,而例题要比中学少得多,不象中学上数学课那样,对一个重要的定理,教师要仔细讲、反复讲,讲完之后又举大量典型的例子。
3 、注意抓好学习的六个环节
高等数学这门课是同学们进入大学后遇到的第一门课,也是一门最重要的基础课。由于在教学方法上、在对学生能力的培养目标上与中学时有很大的不同,因此,同学们在一开始会感到很不适应。为了尽快适应这种环境,要注意抓好下述六个学习环节。
( 1 )预习
为了提高听课效果,每次上课前应对教师要讲的内容进行预习。预习的重点是 阅读 一下要讲的定义、定理和主要公式。预习的主要目的是:第一,使听课时心里有个底,不至于被动地跟着教师的 “ 脚后跟 ” 跑;第二,知道哪些地方是重点和自己的难点疑点,从而在听课时能提高效率;第三,可以弥补由于基础、理解力上的差异所造成的听课困难。形象地说,预习就象要到某个名胜游览之前,先买个旅游图及其说明来看一看,以便在旅游时更主动,收获更大。
( 2 )听课
听课是在大学中获取知识的主要环节。因此,应带着充沛的精力、带着获取新知识的浓厚兴趣、带着预习中的疑点和难点,专心致志地聆听教师如何提出问题、分析问题和解决问题,并且积极主动地思考。
在听课时常会遇到某些问题没听懂情况,这时千万不要在这些问题上持续徘徊而影响继续听课,应承认它并在教材上或笔记上相应处作上记号,继续跟上教师的讲授。遗留的问题、疑点待课后复习时再思考、钻研,或找同学讨论,或找教师答疑,或看参考书。
( 3 )记笔记
教师讲课并非 “ 照本宣科 ” 。教师主要讲重点、讲难点、讲疑点、讲思路、讲方法,还会提出一些应注意的问题、补充一些教材上没有的内容和例子。因此,记好课堂笔记是学好高等数学的一个重要的学习环节。但是要注意的是,课堂学习的中心任务是听、看、想,记笔记的目的是便于课后复习,便于消化课上所讲的内容。因此,记笔记不应占用过多的课堂时间。笔记不必工整,不必全面,不必连贯,但应预留较多的空白以便课后补充、写心得、记疑问。
( 4 )复习
学习包括 “ 学 ” 与 “ 习 ” 两个方面。 “ 学 ” 是为了获取知识, “ 习 ” 是为了消化、掌握、巩固知识。每次课后的当天都应结合课堂笔记和教材及时复习课上所讲的内容。但是,在翻开教材与笔记之前,应先回顾一下课上所讲的主要内容。另外,应该经常地、反复地复习前面所讲过的内容,这样一方面是为了避免边学边忘,另一方面深对以前所学内容的理解,使知识水平上升到更高的层次。
( 5 )做作业
要把高等数学学到手,及时、认真地完成作业是一个必不可少的学习环节。每次的作业最好在当天完成,但是应该在复习完当天的内容之后进行。做作业不仅是检验学习效果的手段,同时也是培养、提高综合分析问题的能力、笔头表达的能力以及计算能力的重要手段。
特别强调,认真完成作业是培养同学们严谨治学的一个环节。因此,要求作业 “ 字迹工整、绘图准确、条理清楚、论据充分 ” 。切忌抄袭,尽量不先看书后的答案。
( 6 )答疑
答疑是高等数学学习的一个重要的环节。遇到疑问时应该及时地与同学讨论,或者及时地向教师请教,切不可将问题放置一旁不理。打个比喻,如果把大学各个课程比做一各个建筑物群,那么,高等数学就是这些建筑物中的那座需要最先建造的、最高的建筑物,而且它不是 “ 建筑群 ” 。如果在建造的过程中质量不好,那么这座建筑物是无法建成的,后面的建筑物也难以建好。
除了要重视上述学习环节之外,还有一点应该大力提倡,那就是互助合作、共同研讨、共同提高。团队精神对于学好高等数学同样重要。
你好!
数学的应用是非常广泛的,有些建筑工程啊往往都要用到数学的知识,比如说把一个建筑物画到一张纸上,就要用到比例尺的知识,生活中衣服打折等等都要用到百分数的知识,还有化学物理,只有数学好了,化学物理才能学得好呀!
还有,数学主要是提高自己的逻辑能力,其实学完小学的数学就差不多够用了。 但是逻辑思考能力就要差很多,这个也是慢慢积累的过程,学好数学的话,一般在一些思维逻辑较强的科目上就会有更多的优势,学好数学是非常重要的!!!
望采纳,谢谢!!O(∩_∩)O~
高等数学在初等数学中的应用如下:
高等数学在经济生活中的应用也十分广泛,例如在投资决策中,如果以均匀流的存款方式,也就是将资金以流水一样的方式定期不断存入银行中,那么计算年末的总价值就可通过定积分的方式。
例如某企业一次性投资某项目2千万元,并决定一年后建成投产,获得经济回报。如果忽略资金的时间价值,那么5年时间就能收回投资本金,但是如果将资金的时间价值考虑进来,可能情况就会有所变化。因此,微积分的使用,让投资决策更趋向于理性化、科学化,利于降低风险,提高回报。
简介
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。
你日后从事的工作,很大部分与你所学的专业挂钩,不黑不吹,高数真的是很多专业课的基础。再者若你想要考研,很多名校是考数学,这便是高数在真实生活中的作用呀。从经济生活来看,高数知识可以教你获得最大边际收入,未来预期可能性。
从学习生活来看,高数占的学分高,学分达标是毕业前提,成绩是评优评先评奖的硬性条件。学习生活,也是真实生活的一部分,且成绩漂亮些也可为你简历加分。
一般人认为小学数学与高等数学相差甚远,事实上它们之间不仅在内容方面,而且在思维形式方面都存在 着密切的联系。如果站在高等数学的高度来理解小学数学,会使人感到小学数学的博大和精深;如果能把小学 数学的内容放在高等数学这一背景中理解,从某种意义上讲小学数学是高等数学的重要组成部分。如果小学数 学教师都能站在高等数学的高度来进行小学数学教学,那将会对小学生学习和理解数学概念起到非常积极的意 义。本文将从内容和思维形式两个方面来揭示小学数学和高等数学之间的联系。
一、内容的互补性
高等数学中的一些概念是小学数学中一些量的抽象,而小学数学的内容则是高等数学中抽象概念的实例。 如果站在抽象后的高度对小学数学的内容进行解释,那么小学数学的内容将是有序的、完整的。例如:加、减 、乘、除是小学数学主要的教学内容之一,在高等数学中则是映射(代数运算)的几个特例而已。如果没有小 学数学这些实例,那么就不可能理解、抽象出一般的代数运算的概念;如果在掌握了一般的代数运算的概念的 基础上讲解加、减、乘、除,就会把这些概念讲活讲完整。一般来讲,高等数学和小学数学在内容上是从以下 四个方面进行互补的。
1.个别和一般
小学数学中有平均数的计算,平均数在高等数学中就是数学期望值的特例。如果站在数学期望的高度来讲 解平均数,教师就会着重强调平均数和各个数之间差异,学生就会知道全班数学平均分数和每个学生的分数, 虽然都是分数,但是它们的意义是完全不同的。反之,如果学生只会计算平均分数,而没有把平均分数和每个 学生的分数加以区别,那么学生只是多做了一些四则运算的习题。这样不仅不能活跃学生的思维,而且也不利 于提高学生的学习兴趣。再如小学数学中求自然数的正约数的个数问题,则是高等数学中代数基本定理的应用 ,并且求解任一正整数约数个数的计算公式,在高等数学中也有论证。
2.有限和无限
在小学数学中,一般是在有限的范围内讨论问题,有些问题则需要利用高等数学的观点进行解释。如小学 数学中数的认识,内容虽然简单,但是其中数“数”及用“对等”的方法比较两个**之间元素个数关系问题 必须让学生理解。这是因为数“数”的方法是高等数学中研究可列集、不可列集的基本方法;而“对等”的方 法则是比较两个**(有限集、无限集)之间元素个数问题的基本方法。又如,小学数学中对于“自然数是无 限的”这一结论,只有用极限的观点来进行解释,学生才能正确地理解这一结论。相反,如果教师没有扎实的 高等数学根底,而是采用一些不正确的方法进行解释,不仅不能帮助学生准确地理解“自然数是无限的”这一 结论,而且会影响学生今后对极限概念的理解。再如,在小学数学中无限循环小数和分数之间的互化问题,这 一问题是高等数学中级数概念的应用,教师在教学中通过“0.9”、“0.99…9”和“1”之间关系的 解释,就会让学生再一次体会极限的概念。
3.静止和运动
小学数学中的很多概念如果只强调结果,则是静止的。如2+3这一表达式,只讨论其和为多少是静止的 。如果分析这个表达形式,则是运动的。这是因为:若2=3-1,3=1+2,……那么这个表达式变为: 3-1+1+2,……;若2、3分别表示2号房间和3号房间里人数之和,那么这个表达式的意义又不同了 。通过这一次次的变化,学生对于数学概念的理解更趋完整,这一次次的变化正是代数思想的雏型。而代数思 想是研究数学的最根本的思想之一。
4.推算和预测
小学数学中有一类问题是已知现在的值,求原来的值。例如:现对甲、乙、丙三个车间的人员进行三次调 整。第一次丙车间不动,甲、乙两个车间中的一个车间调出8人给另一车间;第二次乙车间不动,甲、丙两车 间中的一个车间调出8人给另一车间;第三次甲车间不动,乙、丙两车间中的一个车间调出7人给另一车间。 三次调整后甲车间有7人,乙车间有12人,丙车间有4人。问各车间原来有多少人。
此题若按调整先后顺序来推算,将很繁琐,而用列表进行推算则十分简单。
人 数 甲车间 乙车间 丙车间
第三次调整后 7 12 4
第二次调整后 7 5 11
第一次调整后 15 5 3
原来 7 13 3
求解这一类问题的方法是用列表(或作图)进行的,一般称这种方法为倒退法。而高等数学中更多的是已 知过去和现在的值,求未来,这一类问题称为预测,也是通过列表(或作图)利用统计的方法进行求解的。
问题一:数学的用处有哪些 你好,
数学是人的一种逻辑思维方式,是人们理性的研究各种问题的方法总结。
纯粹的数学可能暂时没有用处,但是也许几十百年后会有作用。比如说矩阵、数论、群论、黎曼几何、偏微分方程……开始出来的时候仅仅是纯粹的数学理论。但是现在却广泛的用于工程计算、密码学、相对论和天文学、物理学中。
应用数学,则是正对某个问题寻找解决方法。其中重要的如数学建模、运筹学、博弈论,都广泛的用于金融、经济、市场分析、公司运营等方面。
数学是一种思维方法,所以数学涉及到社会的方方面面。
问题二:数学有什么实际作用 数学,可以说是一门工具学科。当你在单纯你的学习它时,你会发觉它是一门带抽象性的学科,似乎学来并没有多大的用处。如果说学数学是为了生活,那么小学学习的单纯的加减乘除已经足够满足你在生活中的应用了。但是数学并不仅仅这么一点应用,数学可以说是为其他学科服务的,比如物理,比如化学等。,这些理科学习中充满了各种运算,而这些运算都需要用到数学来学习,当你学到高中学到大学,你会发现,数学当真是一门必不可少的工具学科,很多其它领域的知识都需要用它来解答。数学是工具学科这一点,并不是我个人而言,很多物理学家都是数学家,比如牛顿等,他们利用数学知识来解决各方面问题,数学的发展很大程度上也是由这些物理学家等等来推动了。所以你现在学习数学,感觉没有多大的实用,但是当你以后涉及各种专业性的知识时,那么数学就是必不可少的工具了。
希望能够帮助你,有疑问欢迎追问,祝你学习进步!
问题三:学习数学有什么好处? 数学是开发思维的一门学科,同时也是学技术的基础,如物理,化学,机械,计算机,光电技术都需要数学做基础,数学不学好,学这些时就困难了.所以,数学一定要学好. 学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展. 在学习过程中,一定要:多听(听课),多记(记重要的范文,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多动手(做实验),多复习,多总结.用记课堂笔记的方法集中上课注意力. 英语多看重要课文,熟悉词汇及用法. 其他时间中,一定要保证学习时间,保证各科的学习质量,不能偏科. 每天要保证足够的睡眠,保证学习效率. 安排适当的自由时间用于与家人和朋友的交往及其他活动. 通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便于以后更好的学习. 眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.
求采纳
问题四:为什么学数学,有什么好处? 数学是研究现实世界空间形式和数量关系的一门科学。分为初等数学和高等数学。它在科学发展和现代生活生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。
数学有三个层面。一是作为理论思维的数学,重在培养并反映人类进行理性思维的能力;二是作为技术应用的数学,数学技术和计算机等学科的结合使得数学成为直接创造财富的生产力;三是作为文化修养的数学,数学成为现代人的基本素质的一部分。
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,至今。
数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。
问题五:学“数学”对我们有什么好处? 数学是一大基础学科,可一这么说哲学是人类用语言来解释世界,那么数学就是用数字来解释世界
公利一点,学数学就是为了高考,为了大学毕业,找个好工作,如果只为这点高中水平也就够了,
但我个人认为数学不仅可以锻炼我们逻辑思维能力而且还能提高人的智商,就是使人变聪明!数学是使人变聪明的学科!
数学是研究数与形的科学,我们生活的这个世界都是由数与形组成(广义的角度),研究它们的规律可以使人们更好的认识世界改造世界。
任何一次科技的进步,社会的发展都离不开数学。
例如微积分,微积分是近代数学,物理学的基础。利用微积分的理论人们可以计算出复杂几何图形的面积,以及物理上力学的发展也起了重要作用!
说点现实意义吧,数学可一帮我们在做某种选择时做到最优!例如什么100分的满分60分及格呢?其实这正式用了数学中的黄金比1:0。618再四舍五入得到的,这是一个最优选择的比例。
例如现在我们用的电脑,里面的一些程序都是建立在数学逻辑的基础上的,学好数学有助于了解这些程序,这样你会编程了,自己做软件,就可一赚钱,比尔盖茨就是一个例子,他数学肯定很好!!